Abstract

Cesium bismuth iodide perovskite material offers good stability toward ambient conditions and has potential optoelectronic characteristics. However, wide bandgap, absorber surface roughness, and poor surface coverage with pinholes are among the key impediments to its adoption as a photovoltaic absorber material. Herein, bandgap modification and the tailoring of surface morphology have been performed through molar ratio variation and antisolvent treatment, whereby type III antisolvent (toluene) based on Hansen space has been utilized. XRD and Raman spectroscopy analyses confirm the formation of a 0D/2D mixed dimensional structure with improved optoelectronic properties when the molar ratio of CsI/BiI3 was adjusted from 1.5:1 to 1:1.5. The absorption results and Tauc plot determination show that the fabricated film has a lower bandgap of 1.80 eV. TRPL analysis reveals that the film possesses a very low charge carrier lifetime of 0.94 ns, suggesting deep defects. Toluene improves the charge carrier lifetime to 1.89 ns. The average grain size also increases from 323.26 nm to 444.3 nm upon toluene addition. Additionally, the inclusion of toluene results in a modest improvement in PCE, from 0.23% to 0.33%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.