Abstract

Functionalization of wound dressing is one of the main approaches for promoting wound healing in skin wound management. In this study, our aim is to fabricate a bio-functionalized hydrocolloid wound dressing. The extracellular matrix (ECM) was extracted from human placental tissue. A hydrocolloid film was fabricated using Na-CMC, pectin, gelatin, styrene-isoprene-styrene adhesive, glycerol, and 0.5%-2.5% powdered ECM. A polyurethane film and a release liner were used in the hydrocolloid/ECM films. The mechanical, adhesion, swelling rate, and integrity of the films were investigated. Cell proliferation, adhesion, and migration assays, as well as, SEM and FTIR spectroscopy were also conducted. Macroscopic and microscopic evaluations of wound healing process and formation of blood vessels were conducted in mouse animal models. We successfully fabricated a three-layered ECM-functionalized hydrocolloid dressing with a water vapor transmission rate of 371 g/m2 /day and an adhesion peel strength of 176 KPa. Cellular adhesion, proliferation and migration were promoted by ECM. In the animal tests, ECM-functionalized hydrocolloids significantly improved wound closure and re-epithelialization at days 14 and 21. Also, ECM-functionalized hydrocolloids promoted the formation of hair follicles. Our findings suggest that ECM could enhance the wound healing properties of hydrocolloid wound dressings. This wound dressing could be considered for application in hard-to-heal acute wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.