Abstract

In this study, a simple novel hybrid mesoporous nanomaterial derived from a metal-organic framework (ZIF-8) and chitosan, which were coated on green bismuth oxide, has been successfully synthesized, characterized, and applied to investigate its dapsone loading-releasing capability in the aqueous media. This suggested nanocomposite showed promise for drug loading from water b using hydrogen bonds, pi-pi, and electrostatic interactions. Structural and morphological analyses were performed on the proposed green synthesized nanocomposite through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. Various influencing parameters, including pH, nanocomposite dose, and contact time, were investigated to optimize the dapsone loading process. Utilizing the non-linear optimization methodology, the results show that dapsone-loading efficiency was >85 % for 50 mg.L−1 of dapsone drug. The optimum parameters for achieving maximal loading of dapsone drug were pH = 6.8, hybrid mesosphere dose = 2.6 mg.mL−1, and time = 53 min. Based on the release investigations, the dapsone-loaded nanocomposite was put into phosphate buffer saline, at pH = 7.4 and T = 37 °C, with a maximum efficiency of 93.9 after 24 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.