Abstract

Bioactive and degradable macroporous bioceramics play an important role in clinical applications. In the present study, 45S5 bioglass reinforced macroporous calcium silicate ceramics (45BG-reinforced MCSCs) were fabricated. The effect of bioglass additives on compressive strength and open porosity of the samples was investigated, and the bioactivity and degradability of the obtained reinforced samples were also evaluated. The 45S5 bioglass additive was found to be effective to increase the strength of the MCSCs by the liquid-phase sintering mechanism. The optimum amount of bioglass additives was 5 wt.% and the compressive strength of the reinforced samples was approximately 2 times higher as compared to the pure macroporous calcium silicate ceramics (MCSCs). The compressive strength of the reinforced samples with about 50% porosity reached 112.47 MPa, which was similar to those of the cortical bones. After soaking in simulated body fluid (SBF), hydroxycarbonate apatite (HCA) layer was formed on the surface of the 45BG-reinforced MCSCs. Furthermore, the degradation rate of the reinforced samples was just about one-third of those pure MCSCs. Our results indicated that degradable 45BG-reinforced MCSCs possess excellent mechanical strength and bioactivity, and may be used as bioactive and degradable biomaterials for hard tissue prosthetics or bone tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call