Abstract

Novel three-dimensional (3-D) nano-/microfibrous poly(lactic- co-glycolic acid) (PLGA) scaffolds were fabricated by hybrid electrospinning, involving a combination of solution electrospinning and melt electrospinning. The scaffolds consisted of a randomly oriented structure of PLGA microfibers (average fiber diameter = 28 μm) and PLGA nanofibers (average fiber diameter = 530 nm). From mercury porosimetry, the PLGA nano-/microfiber (10/90) scaffolds were found to have similar pore parameters to the PLGA microfiber scaffolds. PLGA nano-/microfibrous scaffolds were examined and compared with the PLGA microfiber scaffolds in terms of the attachment, spreading and infiltration of normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF). The cell attachment and spreading of both cell types were several times higher in the nano-/microfiber composite scaffolds than in the microfibrous scaffolds without nanofibers. This shows that the presence of nanofibers enhanced the attachment and spreading of the cells on the nano-/microfiber composite scaffolds. Moreover, the nanofibers helped the cells infiltrate easily into the scaffolds. Overall, this novel nano-/microfiber structures has great potential for the 3-D organization and guidance of cells provided for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call