Abstract
One of the effective methods to improve the luminous efficiency and reduce power consumption of plasma display panel (PDP) is searching for new high secondary emission discharging materials. In this paper, doped MgO films with different Zn 2+ dopant concentration are made on indium tin oxides glass substrates by sol-gel method. The effect of annealing atmosphere on the visible light transmittance is discussed, which indicates that the films annealed in the nitrogen have higher transmittance than that in the air. The discharge characteristics of the fabricated Zn 2+ doped MgO thin films are studied in a tube filled with Ne-Xe gas mixtures imitating the real structure of alternating current plasma display panel (AC PDP). When the Zn 2+ ratio is 10 %, the firing voltage of doped MgO thin film in Ne-Xe 5 % at the pressure of 10 torr is 378 V, in contrast to the pure MgO film of 390 V. In addition, burr sparks are also observed at the beginning of the test. As time go on, the gas discharge is more stable. The results show that Zn 2+ doped MgO thin film, due to its lower firing voltage, can be a promising discharge layer for highly efficient AC PDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.