Abstract
This paper presents the fabrication and characteristics of high-performance 850-nm InGaAsP-InGaP strain-compensated multiple-quantum-well (MQW) vertical-cavity surface-emitting lasers (VCSELs). The InGaAsP-InGaP MQW's composition was optimized through theoretical calculations, and the growth condition was optimized using photoluminescence. These VCSELs exhibit superior performance with characteristics threshold currents /spl sim/0.4 mA and slope efficiencies /spl sim/0.6 mW/mA. The threshold current change with temperature is less than 0.2 mA, and the slope efficiency drops less than /spl sim/30% when the substrate temperature is raised from room temperature to 85/spl deg/C. A high modulation bandwidth of 14.5 GHz and a modulation current efficiency factor of 11.6 GHz/(mA)/sup 1/2/ are demonstrated. The authors have accumulated life test data up to 1000 h at 70/spl deg/C/8 mA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.