Abstract

NiTi alloy has been used widely as biomaterials. But because of toxic effects possibly caused by excess Ni ions released during the corrosion process in the physiological environment, it is still a controversial material. Fabricating medicine-loaded coating, which is expected to decrease the release of Ni ions and improve the biocompatibility of the materials, is a potential way to solve the problem. In this paper, NiTi alloy is coated by polyethyleneimine/heparin films via layer-by-layer (LBL) self-assembly method. UV–Vis, FT-IR, atomic force microscopy (AFM) and contact angle measurements are used to characterize the microstructure of coatings and select the best fabrication conditions. Potentiodynamic polarization researches in sodium chloride and dynamic clotting time experiment are utilized to study its corrosion resistance capability and biocompatibility of coatings, respectively. The results indicate that PEI/heparin multilayer coating can improve the biocompatibility of NiTi alloy surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call