Abstract

Intensive research into ultra-thin silicon solar cell applications has generated interesting approaches to reducing both critical materials usage and their associated device and module-level costs. Here we report an extension of previous work on micro-scale Si solar cells, devices fabricated using precise methods of micromachining Si(111) wafers in conjunction with wafer-scale processing. Here we describe a simple yet robust approach to fabricate the silicon microcells by re-designing the device structure, incorporating a thermally grown oxide layer to serve as a wet-etch and diffusion mask, and illustrate modes of light management and array assembly that can provide high-efficiency PV conversion of light to electrical energy. We report a best cell efficiency of 11.7% under an AM1.5D solar spectrum for an optically thin (30 µm thick) device, which is a substantial improvement over previously reported Si solar µ-cells. We show that the improvement attends to both the optimization made in the doping profiles of the device and the presence of the thermal oxide layer, which doubles as an effective electrical passivation and anti-reflection layer. External quantum efficiency measurements specifically show a marked improvement in the blue response that results from mitigating losses due to surface recombination in the high-surface-area, micro-scale devices. We highlight new strategies for integrating these devices into functional, interconnected arrays, using front and backside electrical bus contacts, with optimized spatial distributions on transparent glass substrates. This geometry, with optimized reflector and waveguiding planarization layers, creates a simple concentrator module by redirecting light via internal reflection to illuminate the sidewalls and bottom surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.