Abstract
At present, there is a huge anticipation that the realm of nanotechnology will soon be realized, and the life will become easier and more enjoyable – thanks to numerous new products and apparatus that will be operating on ‘nano-facts’ and nano-sized objects. Material properties and functionalities of the bulk tend to differ when one or more of its dimensions are reduced down to between 100 to 1 nm, the so called ‘nanosize regime’. Thin films (two dimensional, or 2D), nanowires/nanotubes (one dimensional, or 1D), and nanoparticles/quantum dots (zero dimensional, or 0D) constitute the basic classes of nanomaterials. Among these, particularly the 1D-materials are highly desirable, as their geometric shape and high surface area impart high functionally. For example, metal nanowires (MNWs) are likely to become an integral part of future nanodevices, at least as the elements interconnecting the functional components such as ‘nano’-transistors. Additional to the provision of electrical connection to nano-circuits, the MNWs are expected to be utilized as the functional components in various applications ranging from high density perpendicular data storage to nano-sensors, from high-sensitivity nano-electrodes to meta-materials, and so on. In this chapter, we shall focus on the potential applications of MNWs that are synthesized via the template fabrication method. Template synthesis of MNWs arrays comprises the electrochemical reduction of the ions of one/more desirable metals inside the nano-pore channels of an insulating membrane fabricated via self-assembly. Owing to its cost effectiveness, versatility and high throughput the template fabrication, being a bottom up synthesis method, offers significant promise for the production of versatile, tailor-made MNWs. For most end applications, it is desirable to have MNWs with high aspect ratio (ratio of wire length to diameter) and/or specific surface area, production reproducibility as well as uniformity in wire size and shape in conjunction with high spatial ordering. Thus, the self- organized porous anodic aluminium oxide (AAO) membrane, displaying most of the desirable template properties, has become the centre of focus for MNWs synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.