Abstract
This work presents a template-free electrochemical route to producing superhydrophobic copper coatings with the water contact angle of 160 ± 6° and contact angle hysteresis of 5 ± 2°. In this technique, copper deposit with multiscale surface features is formed through a two-step electrodeposition process in a concentrated copper sulfate bath. In the first step, applying a high overpotential results in the formation of structures with dense-branching morphology, which are loosely attached to the surface. In the second step, an additional thin layer of the deposit is formed by applying a low overpotential for a short time, which is used to reinforce the loosely attached branches on the surface. The work also presents a theoretical analysis of the effects of the fabrication parameters on the surface textures that cause the superhydrophobic characteristic of the deposit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.