Abstract

Lignocellulosic biomass-derived nanocellulose has been attracting more and more attentions due to its distinguished advantages and various applications, but its development has been restricted by the preparation especially with environmental friendly approach. Herein, lignin-containing cellulose nanofibrils (LCNF) was prepared from corncob via the combined pretreatment of choline chloride-based DES (ChCl-DES) and enzymatic hydrolysis followed by high-pressure homogenization. The effects of different types of ChCl-DES on the properties of LCNF were investigated and compared. The results showed that LCNF can be successfully fabricated through the combined pretreatments; the LCNF had an average diameter of 60–90 nm, exhibited good fluorescence, high thermal stability (up to 353 °C of Tmax), hydrophobicity, stability, and redispersibility in organic solvent; AC-LCNF showed well oriented arrangement, the highest hydrophobicity and fluorescence, and distinguished redispersibility especially in DMSO. ChCl-DES as one green and sustainable approach would realize efficient separation and high value-added utilization of agricultural residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call