Abstract

Surface texturing is one of the effective strategies to improve bioactivity of implantable materials. In this study, hierarchical micro and nano structure (HMN) were fabricated on Co–Cr–Mo alloy substrate by a movable picosecond laser irradiation. Respectively, microgrooves with nano ripples and islands were produced on Co–Cr–Mo alloy by low and high laser power density. X-ray diffraction apparatus (XRD) phase analysis illustrated that substrate was in the phase of γ- face-centered cubic structure (FCC) before laser treatment, while it was in ε-hexagonal closest packing structure (HCP) phase dominant after laser treatment. Cell adhesion and proliferation studies showed that the HMN surface exhibits enhanced adhesion of MC3TC-E1 osteoblast and promoted cell activity. Analyzing of the morphology of osteoblast cells indicated cells were in high ratio of elongation on the HMN surface, while they mainly kept in round shape on the polished surface. Results indicated the formation of hierarchical structure on Co–Cr–Mo alloy was able to improve biological performances, suggesting the potential application in cobalt based orthopedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.