Abstract

Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call