Abstract
The photoelectrochemical (PEC) properties of heterostructured CdS/BiVO4 and BiVO4/CdS film electrodes on conducting glass for hydrogen production under visible light were investigated. These two types heterostructured film electrodes were prepared using spin coating method and ultrasonic spray pyrolysis method. The structural analyses of the prepared films were determined by using XRD, SEM, EDX and UV–vis. Photoelectrochemical measurements were carried out in a convenient three electrodes cell with 0.5 M Na2SO3 aqueous solution. In order to investigate band gap influence of electrode PEC property, a series ITO/Cd1−xZnxS/BiVO4 and ITO/BiVO4/Cd1−xZnxS (x = 0 ∼ 1) film electrodes were also synthesized. After PEC test, a maximum photocurrent density from ITO/CdS/BiVO4 film electrode was confirmed. The maximum photocurrent density, 3 times and 113 times as that of single CdS film electrode and single BiVO4 film electrode, respectively. Incident photon to current conversion (IPCE) of as prepared film electrodes were measured and the value were 65% (ITO/CdS/BiVO4), 22% (single CdS film) and 10% (ITO/BiVO4/CdS) at 480 nm with 0.3 V external bias. Comparison with ITO/BiVO4/CdS electrode and single Cd1−xZnxS electrodes, the heterostructured ITO/CdS/BiVO4 electrode can effectively suppress photogenerated electron-hole recombination and enhance light harvesting. Therefore, the ITO/CdS/BiVO4 electrode gave the maximum photocurrent density and IPCE value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.