Abstract

Titanium is well-known to be a biocompatible material with good corrosion properties and good strength, taking into account their low specific weight. In powder metallurgy field, titanium has been used in order to obtain porosity materials for biomedical applications. Recently, porous materials have been investigated for their use like hips implants. The principal reason is based on a reduction of stiffness implants, minimizing effects of stress shielding. The purpose of the present work is produced porous materials by space holder technique using ammonium bicarbonate like spacer. Scaffolds of titanium have been fabricated by powders of titanium with different grades of particle size and compacting pressure. Before sintering, stability of green parts has been studied by mechanical test. After sintering, porosity has been evaluated besides mechanical properties and elastic modulus by three points bending test. The microstructural characterisation is performed by optical and electron microscopy.

Highlights

  • Titanium is well-known to be a biocompatible material with good corrosion properties and good strength, taking into account their low specific weight

  • Titanium has been used in order to obtain porosity materials for biomedical applications

  • Porous materials have been investigated for their use like hips implants

Read more

Summary

INTRODUCCIÓN

En el campo de la pulvimetalurgia, el titanio se usa con objeto de obtener tanto materiales densos para aplicaciones industriales[1 y 2], como materiales porosos para aplicaciones biomédicas[3]. Tiene la ventaja de presentar una buena resistencia mecánica, en comparación con su peso, lo cual resulta apropiado para su uso como implantes óseos. El último paso es la reducción del material para obtener polvo de titanio. La reactividad del material durante el proceso se inhibe y la rugosidad que adquieren los polvos permite una buena compactación uniaxial[15]. El propósito del presente trabajo es producir materiales porosos basados en polvo de titanio sinterizado mediante la técnica del espaciador, usando bicarbonato de amonio como formador de porosidad. Después de la sinterización y tras evaluar su porosidad final, se realizarán nuevamente ensayos de flexión a tres puntos para obtener tanto sus propiedades mecánicas, como el módulo de elasticidad en función del tamaño de partícula utilizado. La caracterización microestructural de las aleaciones se ha llevado a cabo por microscopía óptica y electrónica

MATERIALES Y PROCEDIMIENTO EXPERIMENTAL
Eliminación del espaciador
Estabilidad de los compactos en verde
Sinterabilidad y porosidad final
Propiedades mecánicas
Microestructura
Fractografías
Findings
CONCLUSIONES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.