Abstract

Investigations on a set of experimental models of highly viscous intrusions were carried out in order to study the internal strain pattern during vertical ascent and emplacement of granite intrusions. The strain pattern was determined by means of anisotropy of magnetic susceptibility (AMS) resulting from the orientation of magnetite particles in a liquid plaster medium. The modelled intrusions show distinct fabrics reflecting the flow of a rheologically complex, non-Newtonian material. During the vertical growth of the intrusion, constrictional vertical fabrics are transposed into flattening fabrics, and along with the development of low-intensity fabric domains are passively transported upwards. Vertical growth takes place along subvertical thrust shear zones that satisfactorily explain the discordant magmatic fabrics in granites along intrusion sides. The resulting complex fabric patterns suggest that the vertical movement of material in ascending intrusions is accommodated by various flow mechanisms operating simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.