Abstract

Tactile sensing or fabric hand plays a critical role in an individual’s decision to buy a certain fabric from the range of available fabrics for a desired application. Therefore, textile and clothing manufacturers have long been in search of an objective method for assessing fabric hand, which can then be used to engineer fabrics with a desired hand. In this paper, we explore how to characterize surface properties (e.g. smoothness) of materials. We formulate the problem as a fine-grained texture classification problem, and study how deep learning-based texture representation techniques can help tackle the task. We introduce a new, challenging microscopic material surface dataset (CoMMonS), geared towards an automated fabric quality assessment mechanism in an intelligent manufacturing system. Additionally, we propose a multi-level texture encoding and representation network (MuLTER), which extracts texture details and structural information. Our dataset and source code are available at https://ghassanalregib.info/software-and-datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.