Abstract

Forward modeling of transpression–transtension, assuming homogeneous strain and a direct relationship between finite strain axes and foliation–lineation in tectonites, investigates fields of stability of foliation and lineation orientations in oblique convergence and divergence. Vertical foliation–horizontal lineation (VF–HL) develop for angles of convergence–divergence between 0 and 20°. With increasing finite strain, this narrow window of stability is further reduced; lineation switches to vertical in transpression and foliation switches to horizontal in transtension. If a shear zone contains VF–HL, it either developed as a zone very close to pure wrenching, or recorded low finite strain. The stability of VF–HL at high strain and higher angles of convergence is enhanced by lateral extrusion of material along transpression zones. VF–HL may be stabilized in magmatic bodies that progressively intrude transtension zones, if the wrench component of deformation partitions within them. Alternatively, if these bodies are dike-like, cool fast, and do not record large deformation, they take up the extension component of transtension through anisotropic volume addition, leaving a larger component of wrench deformation in the country rocks; this effect stabilizes VF–HL effectively at low strain, but only marginally so at high strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call