Abstract

A fast procedure obtained by the combination of fabric phase extraction (FPSE) with high performance liquid chromatography (HPLC) has been developed and validated for the quantification of favipiravir (FVP) in human plasma and breast milk. A sol-gel polycaprolactone-block-polydimethylsiloxane-block-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated on 100% cellose cotton fabric was selected as the most efficient membrane for FPSE in human plasma and breast milk samples. HPLC-UV analysis were performed using a RP C18 column under isocratic conditions. Under these optimezed settings, the overall chromatographic analysis time was limited to only 5 min without encountering any observable matrix interferences. Following the method validation procedure, the herein assay shows a linear calibration curve over the range of 0.2–50 µg/mL and 0.5–25 µg/mL for plasma and breast milk, respectively. The method sensitivities in terms of limit of detection (LOD) and limit of quantification (LOQ), validated in both the matrices, have been found to be 0.06 and 0.2 µg/mL for plasma and 0.15 and 0.5 µg/mL for milk, respectively. Intraday and interday precision and trueness, accordingly to the International Guidelines, were validated and were below 3.61% for both the matrices. The herein method was further tested on real samples in order to highlight the applicability and the advantage for therapeutic drug monitoring (TDM) applications. To the best of our knowledge, this is the first validated FPSE-HPLC-UV method in human plasma and breast milk for TDM purposes applied on real samples. The validated method provides fast, simple, cost reduced, and sensitive assay for the direct quantification of favipiravir in real biological matrices, also appliyng a well-known rugged and cheap instrument configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.