Abstract

Defect segmentation has been a focal point in fabric inspection research, and it remains challenging because it detects delicate features of defects complicated by variations in weave textures and changes in environmental factors. According to the different features between the normal fabric image and defect image, this paper presents an adaptive image segmentation method based on a simplified region growing pulse coupled neural network (SRG-PCNN) for detecting fabric defects. The validation tests on the developed algorithms were performed with fabric images, and results showed that SRG-PCNN is a feasible and efficient method for defect detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.