Abstract

AbstractFabric‐based triboelectric nanogenerators (TENGs) exhibit superior output performance, flexibility, and wearability. However, the fabric structure often creates gaps that accumulate contaminants, which weaken the performance and durability of the TENGs. To address this challenge, a novel eco‐friendly superhydrophobic fabric‐based TENG (SF‐TENG) woven with superhydrophobic electroconductive bacterial cellulose fiber (SEBC fiber) is presented. To construct durable superhydrophobicity, an ingenious bio‐fabricated method is employed for the shell–core structure. SEBC fibers with bio‐fabricated shell–core structure exhibit excellent electroconductibility, mechanical property, biodegradability, and durable superhydrophobicity. SF‐TENG displays a maximum open‐circuit voltage of 266.0 V, a short‐circuit current of 5.9 µA, and an output power of 489.7 µW, and successfully powers devices such as stopwatch and calculator. Abilities of self‐cleaning and anti‐fouling guarantee the stable output performance of SF‐TENG under harsh environmental conditions such as liquids pouring. Furthermore, the intelligent clothing is designed based on SF‐TENG to detect motion signals, and it is further utilized to construct a Sports and Health Monitoring System as a deep application. In summary, this study provides a novel strategy of bio‐fabrication for the design and preparation of superhydrophobic electroconductive fiber with shell–core structure. The SF‐TENG demonstrates practicability, stability and is promising for wearable devices in harsh environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.