Abstract
Development of new anti-bacterial agents acting upon underexploited targets and thus evading known mechanisms of resistance is the need of the hour. The highly conserved and distinct bacterial fatty acid biosynthesis pathway (FAS-II), presents a validated and yet relatively underexploited target for drug discovery. FabI and its isoforms (FabL, FabK, FabV and InhA) are essential enoyl-ACP reductases present in several microorganisms. In addition, the components of the FAS-II pathway are distinct from the multi-enzyme FAS-I complex found in mammals. Thus, inhibition of FabI and its isoforms is anticipated to result in broad-spectrum antibacterial activity. Several research groups from industry and academic laboratories have devoted significant efforts to develop effective FabI-targeting antibiotics, which are currently in various stages of clinical development for the treatment of multi-drug resistant bacterial infections. This review summarizes all the natural as well as synthetic inhibitors of gram-positive and gram-negative enoyl ACP reductases (FabI). The knowledge of the reported inhibitors can aid in the development of broad-spectrum antibacterials specifically targeting FabI enzymes from S.aureus, S.epidermidis, B.anthracis, B.cereus, E.coli, P. aeruginosa, P. falciparum and M. tuberculosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.