Abstract

Development of new anti-bacterial agents acting upon underexploited targets and thus evading known mechanisms of resistance is the need of the hour. The highly conserved and distinct bacterial fatty acid biosynthesis pathway (FAS-II), presents a validated and yet relatively underexploited target for drug discovery. FabI and its isoforms (FabL, FabK, FabV and InhA) are essential enoyl-ACP reductases present in several microorganisms. In addition, the components of the FAS-II pathway are distinct from the multi-enzyme FAS-I complex found in mammals. Thus, inhibition of FabI and its isoforms is anticipated to result in broad-spectrum antibacterial activity. Several research groups from industry and academic laboratories have devoted significant efforts to develop effective FabI-targeting antibiotics, which are currently in various stages of clinical development for the treatment of multi-drug resistant bacterial infections. This review summarizes all the natural as well as synthetic inhibitors of gram-positive and gram-negative enoyl ACP reductases (FabI). The knowledge of the reported inhibitors can aid in the development of broad-spectrum antibacterials specifically targeting FabI enzymes from S.aureus, S.epidermidis, B.anthracis, B.cereus, E.coli, P. aeruginosa, P. falciparum and M. tuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.