Abstract

Core biochemical pathways such as Fatty-acid synthesis II (FAS II) is ascribed to the synthesis of fatty-acids, biotin and lipoic acid in prokaryotes. It has two dehydrogenases namely, FabG and FabI which interact with the fatty-acid chain bound to Acyl-carrier protein (ACP), a well-studied enzyme which binds to substrates of varying lengths. This protein-protein interaction 'broadens' the active site of these dehydrogenases thus, contributing to their flexible nature. This property is exploited for catalysing numerous chiral synthons, alkanes, long-chain alcohols and secondary metabolites in industries especially with FabG. FASI relegates FASII in eukaryotes making it a 'relic gene pool' and an antibacterial drug target with diverse inhibitor and substrate markush. FabG often substitutes other dehydrogenases for producing secondary metabolites in nature. This redundancy is probably due to gene duplication or addition events possibly making FabG, a progenitor to some of the complex short-chain dehydrogenases used in organisms and industries today.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.