Abstract

Transforming the nonlinear Black-Scholes equation into the diffusion PDE by introducing the log transform ofSand(T−t)→τcan provide the most stable platform within which option prices can be evaluated. The space jump that appeared in the transformation model is suitable to be solved by the sparse grid approach. An adaptive sparse approximation solution of the nonlinear second-order PDEs was constructed using Faber-Schauder wavelet function and the corresponding multiscale analysis theory. First, we construct the multiscale wavelet interpolation operator based on the definition of interpolation wavelet theory. The operator can be used to discretize the weak solution function of the nonlinear second-order PDEs. Second, using the couple technique of the variational iteration method (VIM) and the precision integration method, the sparse approximation solution of the nonlinear partial differential equations can be obtained. The method is tested on three classical nonlinear option pricing models such as Leland model, Barles-Soner model, and risk adjusted pricing methodology. The solutions are compared with the finite difference method. The present results indicate that the method is competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.