Abstract
Faà di Bruno's formula gives an expression for the derivatives of the composition of two real-valued functions. In this paper we prove a multivariate and synthesised version of Faà di Bruno's formula in higher dimensions, providing a combinatorial expression for the derivatives of chain compositions F(1)∘…∘F(m) of functions F(l):RN→RN in terms of sums over labelled trees. We give several applications of this formula, including a new involution formula for the inversion of multivariate power series. We use this framework to outline a combinatorial approach to studying the invertibility of polynomial mappings, giving a purely combinatorial restatement of the Jacobian conjecture. Our methods extend naturally to the non-commutative case, where we prove a free version of Faà di Bruno's formula for multivariate power series in free indeterminates, and use this formula as a tool for obtaining a new inversion formula for free power series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.