Abstract

Given two nonlinear input–output systems written in terms of Chen–Fliess functional expansions, i.e., Fliess operators, it is known that the feedback interconnected system is always well defined and in the same class. An explicit formula for the generating series of a single-input, single-output closed-loop system was provided by the first two authors in earlier work via Hopf algebra methods. This paper is a sequel. It has four main innovations. First, the full multivariable extension of the theory is presented. Next, a major simplification of the basic setup is introduced using a new type of grading that has recently appeared in the literature. This grading also facilitates a fully recursive algorithm to compute the antipode of the Hopf algebra of the output feedback group, and thus, the corresponding feedback product can be computed much more efficiently. The final innovation is an improved convergence analysis of the antipode operation, namely, the radius of convergence of the antipode is computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.