Abstract

IntroductionHemophilia B (HB) is a hereditary bleeding disorder caused by the genetic variation of the coagulation factor IX (FIX) gene (F9). Several F9 structural abnormalities, including large deletion and/or insertion, have been observed to cause HB development. However, there is limited information available on F9 deep intronic variations. In this study, we report about a novel large deletion/insertion observed in a deep region of F9 intron 1 that causes mRNA splicing abnormalities. Patient and methodsThe patient was a Japanese male diagnosed with moderate HB (FIX:C = 3.0 IU/dL). The genomic DNA of the patient was isolated from peripheral blood leukocytes. DNA sequences of F9 exons and splice donor/acceptor sites were analyzed via polymerase chain reaction and Sanger sequencing. Variant-affected F9 mRNA aberration and FIX protein production, secretion, and coagulant activity were analyzed by cell-based exon trap and splicing-competent FIX expression vector systems. ResultsA 28-bp deletion/476-bp insertion was identified in the F9 intron 1 of a patient with moderate HB. A DNA sequence identical to a part of the inverted HNRNPA1 exon 12 was inserted. Cell-based transcript analysis revealed that this large intronic deletion/insertion disrupted F9 mRNA splicing pattern, resulting in reduction of protein-coding F9 mRNA. ConclusionA novel deep intronic F9 rearrangement was identified in a Japanese patient with moderate HB. Abnormal F9 mRNA splicing pattern due to this deep intronic structural variation resulted in a reduction of protein-coding F9 mRNA, which probably caused the moderate HB phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call