Abstract

A volumetric solar receiver receives the concentrated radiation generated by a large number of heliostats. Heat transfer takes place from the receiver solid phase to the air as it passes through the porous receiver. Such combined heat transfer within the receiver, associated radiation, convection and conduction, are investigated using a local thermal non-equilibrium model. Analytic solutions are obtained for the developments of air and ceramic temperatures as well as the pressure along the flow direction. The results show that the pore diameter must be larger than its critical value to achieve high receiver efficiency. Subsequently, there exists an optimal pore diameter for achieving the maximum receiver efficiency under the equal pumping power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.