Abstract

This paper proposes a novel robust fundamental frequency (F0) estimation algorithm based on complex-valued speech analysis for an analytic speech signal. Since analytic signal provides spectra only over positive frequencies, spectra can be accurately estimated in low frequencies. Consequently, it is considered that F0 estimation using the residual signal extracted by complex-valued speech analysis can perform better for F0 estimation than that for the residual signal extracted by conventional real-valued LPC analysis. In this paper, the autocorrelation function weighted by AMDF is adopted for the F0 estimation criterion and four signals; speech signal, analytic speech signal, LPC residual and complex LPC residual, are evaluated for the F0 estimation. Speech signals used in the experiments were corrupted by adding white Gaussian noise whose noise levels are 10, 5, 0, -5 [dB]. The experimental results demonstrate that the proposed algorithm based on complex speech analysis can perform better than other methods in an extremely noisy environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.