Abstract

We establish the notions of f-stability and strong f-stability concerning closed spacelike hypersurfaces immersed with constant f-mean curvature in a conformally stationary spacetime endowed with a conformal timelike vector field V and a weight function f. When V is closed, with the aid of the f-Laplacian of a suitable support function, we characterize f-stable closed spacelike hypersurfaces through the analysis of the first eigenvalue of the Jacobi operator associated to the corresponding variational problem. Furthermore, we obtain sufficient conditions which assure that a strongly f-stable closed spacelike hypersurface must be either f-maximal or isometric to a leaf orthogonal to V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.