Abstract

The ccd locus of the F plasmid codes for two gene products, CcdA and CcdB, which contribute to the plasmid's high stability by post-segregational killing of plasmid-free bacteria. Like the quinolones, the CcdB protein is a poison of the DNA-topoisomerase II complexes, while CcdA acts as an antidote against CcdB. In addition to these poison-antipoison properties, the CcdA and CcdB proteins act together at transcription level to repress their own synthesis. In this work, we have isolated, in vivo, and characterized several non-killer CcdB mutants. All missense mutations which inactivate CcdB killer activity are located in the region coding for the last three C-terminal residues. However, the resulting mutant CcdB proteins retain their autoregulatory properties. We conclude that the last three C-terminal residues of CcdB play a key role in poisoning but are not involved in repressor formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.