Abstract

The GABA analog phenibut (β-Phenyl-GABA) is a GABAB receptor agonist that has been licensed for various uses in Russia. Phenibut is also available as a dietary supplement from online vendors worldwide, and previous studies have indicated that phenibut overdose results in intoxication, withdrawal symptoms, and addiction. F-phenibut (β-(4-Fluorophenyl)-GABA), a derivative of phenibut, has not been approved for clinical use. However, it is also available as a nootropic supplement from online suppliers. F-phenibut binds to GABAB with a higher affinity than phenibut; therefore, F-phenibut may lead to more serious intoxication than phenibut. However, the mechanisms by which F-phenibut acts on GABAB receptors and influences neuronal function remain unknown.In the present study, we compared the potency of F-phenibut, phenibut, and the GABAB agonist (±)-baclofen (baclofen) using in vitro patch-clamp recordings obtained from mouse cerebellar Purkinje cells slice preparations Our findings indicate that F-phenibut acted as a potent GABAB agonist. EC50 of outward current density evoked by the three GABAB agonists decreased in the following order: phenibut (1362 μM) > F-phenibut (23.3 μM) > baclofen (6.0 μM). The outward current induced by GABAB agonists was an outward-rectifying K+ current, in contrast to the previous finding that GABAB agonists activates an inward-rectifying K+ current. The K+ current recorded in the present study was insensitive to extracellular Ba2+, intra- or extracellular Cs+, and intra- or extracellular tetraethylammonium-Cl. Moreover, F-phenibut suppressed action potential generation in Purkinje cells. Thus, abuse of F-phenibut may lead to severe damage by inhibiting the excitability of GABAB-expressing neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call