Abstract

Changes in tumor metabolic activity have been shown to be an early indicator of treatment effectiveness for breast cancer, mainly in the neoadjuvant setting. The histopathologic response at the completion of chemotherapy has been used as the reference standard for assessment of the accuracy of (18)F-FDG PET in predicting a response during systemic treatment. Although a pathologic complete response (pCR) remains an important positive prognostic factor for an individual patient, a recent metaanalysis could validate pCR as a surrogate marker for patient outcomes only in aggressive breast cancer subtypes. For establishment of the clinical application of metabolic treatment response studies, larger series of specific breast cancer subtypes-including hormone receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative breast cancers-are necessary. In addition, thresholds for relative changes in (18)F-FDG uptake to distinguish between responding and nonresponding tumors need to be validated for different systemic treatment approaches, with progression-free survival and overall survival as references. A PET-based treatment stratification is applicable clinically only if valid alternative therapies are available. Of note, patients who do not achieve a pCR might still benefit from neoadjuvant therapy enabling breast-conserving surgery. In the metastatic setting, residual tumor metabolic activity after the initiation of systemic therapy is an indicator of active disease, whereas a complete resolution of metabolic activity is predictive of a successful treatment response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call