Abstract

The F plasmid PifA protein, known to be the cause of F exclusion of bacteriophage T7, is shown to be a membrane-associated protein. No transmembrane domains of PifA were located. In contrast, T7 gp1.2 and gp10, the two phage proteins that trigger phage exclusion, are both soluble cytoplasmic proteins. The Escherichia coli FxsA protein, which, at higher concentrations than found in wild-type cells, protects T7 from exclusion, is shown to interact with PifA. FxsA is a polytopic membrane protein with four transmembrane segments and a long cytoplasmic C-terminal tail. This tail is not important in alleviating F exclusion and can be deleted; in contrast, the fourth transmembrane segment of FxsA is critical in allowing wild-type T7 to grow in the presence of F PifA. These data suggest that the primary event that triggers the exclusion process occurs at the cytoplasmic membrane and that FxsA sequesters PifA so that membrane damage is minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.