Abstract

Homologous recombination (HR) is the major mechanism of rescue of stalled replication forks or repair of DNA double-strand breaks (DSBs) during S phase or mitosis. In human cells, HR is facilitated by the BRCA2-BRCA1-PALB2 module, which loads the RAD51 recombinase onto a resected single-stranded DNA end to initiate repair. Although the process is essential for error-free repair, unrestrained HR can cause chromosomal rearrangements and genome instability. F-box DNA Helicase 1 (FBH1) antagonizes the role of BRCA2-BRCA1-PALB2 to restrict hyper-recombination and prevent genome instability. Here, we analyzed reported FBH1 mutations in cancer cells using the Catalogue of Somatic Mutations in Cancers (COSMIC) to understand how they interact with the BRCA2-BRCA1-PALB2. Consistent with previous results from yeast, we find that FBH1 mutations co-occur with BRCA2 mutations and to some degree BRCA1 and PALB2. We also describe some co-occurring mutations with RAD52, the accessory RAD51 loader and facilitator of single-strand annealing, which is independent of RAD51. In silico modeling was used to investigate the role of key FBH1 mutations on protein function, and a Q650K mutation was found to destabilize the protein structure. Taken together, this work highlights how mutations in several DNA damage repair genes contribute to cellular transformation and immortalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call