Abstract

f-biharmonic maps are generalizations of harmonic maps and biharmonic maps. In this paper, we give some descriptions of f-biharmonic curves in a space form. We also obtain a complete classification of proper f-biharmonic isometric immersions of a developable surface in R3 by proving that a proper f-biharmonic developable surface exists only in the case where the surface is a cylinder. Based on this, we show that a proper biharmonic conformal immersion of a developable surface into R3 exists only in the case when the surface is a cylinder. Riemannian submersions can be viewed as a dual notion of isometric immersions (i.e., submanifolds). We also study f-biharmonicity of Riemannian submersions from 3-manifolds by using the integrability data. Examples are given of proper f-biharmonic Riemannian submersions and f-biharmonic surfaces and curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.