Abstract

In this paper we study singularities defined by action of Frobenius in characteristic $p > 0$. We prove results analogous to inversion of adjunction along a center of log canonicity. For example, we show that if $X$ is a Gorenstein normal variety then to every normal center of sharp $F$-purity $W \subseteq X$ such that $X$ is $F$-pure at generic point of $W$, there exists a canonically defined $\bQ$-divisor $\Delta_{W}$ on $W$ satisfying $(K_X)|_W \sim_{\bQ} K_{W} + \Delta_{W}$. Furthermore, singularities of $X$ near $W$ are the same as singularities of $(W, \Delta_{W})$. As an application, we show that there are finitely many subschemes of a quasi-projective variety that are compatibly split by a given Frobenius splitting. We also reinterpret Fedder's criterion in this context, which has some surprising implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.