Abstract

The immortalised RBE4 cell line, derived from rat brain capillary endothelial cells, preserves many features of the in vivo brain endothelium, and hence is of interest as a potential in vitro model of the blood–brain barrier (BBB). This study reports the effects of elevated intracellular cAMP and factors released by astrocytes on the F-actin cytoskeleton and paracellular sucrose permeability of monolayers of RBE4 cells. RBE4 cells grown in control medium showed a marked increase in the F-actin staining at the cytoplasmic margin at confluence, which was not significantly enhanced by elevation of intracellular cAMP and/or addition of astrocyte-conditioned medium (ACM). The formation of the marginal band of F-actin was accompanied by an increase in the F-actin content of the RBE4 cells up to confluence, and a decline in F-actin content thereafter. Elevation of intracellular cAMP or co-culture above astrocytes significantly decreased the paracellular sucrose permeability of confluent RBE4 cell monolayers grown on collagen filters ( P<0.01 and P<0.001, respectively). Co-culture above astrocytes together with elevated cAMP also produced a significant decrease in the sucrose permeability of the monolayer ( P<0.01) but this was no greater than with astrocytes alone. These findings show that the RBE4 cell line may serve as a useful in vitro model for the study of brain endothelial cell physiology and agents which alter the permeability of the BBB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call