Abstract

Mechanical work serves as the foundation for dynamic cellular processes, ranging from cell division to migration. A fundamental driver of cellular mechanical work is the actin cytoskeleton, composed of filamentous actin (F-actin) and myosin motors, where force generation relies on adenosine triphosphate (ATP) hydrolysis. F-actin architectures, whether bundled by crosslinkers or branched via nucleators, have emerged as pivotal regulators of myosin II force generation. However, it remains unclear how distinct F-actin architectures impact the conversion of chemical energy to mechanical work. Here, we employ in vitro reconstitution of distinct F-actin architectures with purified components to investigate their influence on myosin ATP hydrolysis (consumption). We find that F-actin bundles composed of mixed polarity F-actin hinder network contraction compared to non-crosslinked network and dramatically decelerate ATP consumption rates. Conversely, linear-nucleated networks allow network contraction despite reducing ATP consumption rates. Surprisingly, branched-nucleated networks facilitate high ATP consumption without significant network contraction, suggesting that the branched network dissipates energy without performing work. This study establishes a link between F-actin architecture and myosin energy consumption, elucidating the energetic principles underlying F-actin structure formation and the performance of mechanical work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call