Abstract

We introduce the high-throughput synthesis of various (18)F-labeled peptide tracers by a straightforward (18)F-labeling protocol based on a chemo-orthogonal strain-promoted alkyne azide cycloaddition (SPAAC) using aza-dibenzocyclootyne-substituted peptides as precursors with (18)F-azide synthon to develop peptide based positron emission tomography (PET) molecular imaging probes. The SPAAC reaction and subsequent chemo-orthogonal purification reaction with azide resin proceeded quickly and selectively under physiologically friendly reaction conditions (i.e., toxic chemical reagents-free, aqueous medium, room temperature, and pH ≈7), and provided four (18)F-labeled tumor targetable bioactive peptides such as cyclic Arg-Gly-Asp (cRGD) peptide, bombesin (BBN), c-Met binding peptide (cMBP), and apoptosis targeting peptide (ApoPep) in high radiochemical yields as direct injectable solutions without any HPLC purification and/or formulation processes. In vitro binding assay and in vivo PET molecular imaging study using the (18)F-labeled cRGD peptide also demonstrated a successful application of our (18)F-labeling protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call