Abstract

The regulation of PD-L1 is the key question, which largely determines the outcome of the immune checkpoint inhibitors (ICIs) based therapy. However, besides the transcription level, the protein stability of PD-L1 is closely correlated with its function and has drawn increasing attention. In this study, EZH2 inhibition enhances PD-L1 expression and protein stability, and the deubiquitinase ubiquitin-specific peptidase 22 (USP22) is identified as a key mediator in this process. EZH2 inhibition transcriptionally upregulates USP22 expression, and upregulated USP22 further stabilizes PD-L1. Importantly, a combination of EZH2 inhibitors with anti-PD-1 immune checkpoint blockade therapy improves the tumor microenvironment, enhances sensitivity to immunotherapy, and exerts synergistic anticancer effects. In addition, knocking down USP22 can potentially enhance the therapeutic efficacy of EZH2 inhibitors on colon cancer. These findings unveil the novel role of EZH2 inhibitors in tumor immune evasion by upregulating PD-L1, and this drawback can be compensated by combining ICI immunotherapy. Therefore, these findings provide valuable insights into the EZH2-USP22-PD-L1 regulatory axis, shedding light on the optimization of combining both immune checkpoint blockade and EZH2 inhibitor-based epigenetic therapies to achieve more efficacies and accuracy in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.