Abstract

ABSTRACT The present study examines the multiple slip effects and constructive chemical reaction on Eyring-Powell nanoliquid through a permeable elongated sheet on an inclined magnetic field. The energy balance equation includes Heat and Joule dissipation terms. The renowned Buongiorno nanofluid model is employed extensively to explore the thermophoresis and Brownian motion phenomena. The primary partial differential equations (PDEs) of governing flow phenomena are remodeled to non-linear ordinary differential equations (ODEs) by adopting proper similarity invariants. Runge-Kutta 4th order quadrature employing shooting technique is utilized to transform boundary value problem to initial value problem to seek numerical results via graphs and tables on physically interesting parameters. Current outcomes are validated through the comparison with previously published studies. An applied magnetic field slows down the fluid and raises both thermal and solutal boundary layers. It is significant to notice that the thermal boundary layer rises, as the Brownian and Thermophoresis are amplified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.