Abstract

Robot-assisted intraocular microsurgery can improve performance by aiding the surgeon in operating on delicate micron-scale anatomical structures of the eye. In order to account for the eyeball motion that is typical in intraocular surgery, there is a need for fast and accurate algorithms that map the retinal vasculature and localize the retina with respect to the microscope. This work extends our previous work by a graph-based SLAM formulation using a sparse incremental smoothing and mapping (iSAM) algorithm. The resulting technique, "EyeSAM," performs SLAM for intraoperative vitreoretinal surgical use while avoiding spurious duplication of structures as with the previous simpler technique. The technique also yields reduction in average pixel error in the camera motion estimation. This work provides techniques to improve intraoperative tracking of retinal vasculature by handling loop closures and achieving increased robustness to quick shaky motions and drift due to uncertainties in the motion estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.