Abstract

Epigenetic modulation of chromatin states constitutes a vital component of the cellular repertoire of transcriptional regulatory mechanisms. The development of new technologies capable of generating genome-wide maps of chromatin modifications has re-energized the field. We are now poised to determine how species- and tissue-specific patterns of DNA methylation, in concert with other chromatin modifications, function to establish and maintain cell- and tissue-specific patterns of gene expression during normal development, cellular differentiation, and disease. This review addresses our current understanding of the major mechanisms and function of DNA methylation in vertebrates with a historical perspective and an emphasis on what is known about DNA methylation in eye development and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.