Abstract

Light at infrared wavelengths has been demonstrated to modulate the pattern of neural signals transmitted from the angular motion sensing semicircular canals of the vestibular system to the brain. In the present study, we have characterized physiological eye movements evoked by focused, pulsed infrared radiation (IR) stimuli directed at an individual semicircular canal in a mammalian model. Pulsed IR (1863nm) trains were directed at the posterior semicircular canal in a rat using 200-400µm optical fibers. Evoked bilateral eye movements were measured using a custom-modified video-oculography system. The activation of vestibulo-ocular motor pathways by frequency modulated pulsed IR directed at single posterior semicircular canals evoked significant, characteristic bilateral eye movements. In this case, the resulting eye movements were disconjugate with ipsilateral eye moving upwards with a rotation towards the stimulated ear and the contralateral eye moving downwards. The eye movements were stable through several hours of repeated stimulation and could be maintained with 30 + minutes of continuous, frequency-modulated IR stimulation. Following the measurements, the distance of the fiber from target structures and orientation of the beam relative to vestibular structures were determined using micro-computed tomography. Results highlight the spatial selectivity of optical stimulation. Our results demonstrate a novel strategy for direct optical stimulation of the vestibular pathway in rodents and lays the groundwork for future applications of optical neural stimulation in inner ear research and therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call