Abstract

The purpose of this work was to study the relationships between quantitative ultrasound (QUS) parameters and the microstructure properties of human proximal femur samples. QUS data acquisition was achieved by means of a custom-developed experimental set-up, which allowed the insonification of excised femoral heads along 30 different directions, each time including both the trabecular region and the cortical layer in their physiologic morphological configuration. Two QUS parameters, Integrated Reflection Coefficient (IRC) and Apparent Integrated Backscatter (AIB), were measured by means of both single-element transducers at two different frequencies (2.25 MHz and 3.5 MHz) and a clinically-available 128-element convex probe. The obtained data were compared with local structural properties of the bone samples as quantified by high-resolution micro-computed tomography (micro-CT). The corresponding results showed a strong correlation between trabecular bone volume fraction and AIB (|r| up to 0.81) and an appreciable linear correlation between cortical bone density and IRC (|r| up to 0.59). QUS parameter values measured by single-element transducers were optimally reproduced when the clinically-available probe was employed. This provides the proposed approach with an interesting potential for a prompt clinical translation as a possible new tool for osteoporosis diagnosis, especially considering that the insonification of the whole femoral head was performed in its physiological shape with all its components (cartilage, cortical layer, trabecular region).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.