Abstract

With diminishing returns and high clinical failure rates from traditional preclinical and animal-based drug discovery strategies, more emphasis is being placed on alternative drug discovery platforms. Ex vivo approaches represent a departure from both more traditional preclinical animal-based models and clinical-based strategies and aim to address intra-tumoural and inter-patient variability at an earlier stage of drug discovery. Additionally, these approaches could also offer precise treatment stratification for patients within a week of tumour resection in order to direct tailored therapy. One tumour group that could significantly benefit from such ex vivo approaches are high-grade gliomas, which exhibit extensive heterogeneity, cellular plasticity and therapy-resistant glioma stem cell (GSC) niches. Historic use of murine-based preclinical models for these tumours has largely failed to generate new therapies, resulting in relatively stagnant and unacceptable survival rates of around 12-15 months post-diagnosis over the last 50 years. The near universal use of DNA damaging chemoradiotherapy after surgical resection within standard-of-care (SoC) therapy regimens provides an opportunity to improve current treatments if we can identify efficient drug combinations in preclinical models that better reflect the complex inter-/intra-tumour heterogeneity, GSC plasticity and inherent DNA damage resistance mechanisms. We have therefore developed and optimised a high-throughput ex vivo drug screening platform; GliExP, which maintains GSC populations using immediately dissociated fresh surgical tissue. As a proof-of-concept for GliExP, we have optimised SoC therapy responses and screened 30+ small molecule therapeutics and preclinical compounds against tumours from 18 different patients, including multi-region spatial heterogeneity sampling from several individual tumours. Our data therefore provides a strong basis to build upon GliExP to incorporate combination-based oncology therapeutics in tandem with SoC therapies as an important preclinical alternative to murine models (reduction and replacement) to triage experimental therapeutics for clinical translation and deliver rapid identification of effective treatment strategies for individual gliomas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.