Abstract

AbstractA previous study demonstrated that cabbage was P efficient compared to carrot and potato. However, calculating plant P uptake by a mechanistic simulation model based on P transport by diffusion and mass flow, P uptake of roots according to the Michaelis‐Menten kinetics, and morphological root characteristics including root hairs, revealed that these parameters could explain only 2/5 of the total P uptake of cabbage, but 4/5 of that of carrot and potato (Dechassa et al., 2003). Therefore, it was hypothesized that a higher root exudation of organic anions may enhance P mobilization and hence P uptake of cabbage. The objective of this research was to determine root exudation of organic anions by the three species, and to investigate the influence of plant age and dark/light period on organic‐anion exudation by cabbage. Experiments were conducted in a growth chamber in nutrient solution with or without P. Organic anions were determined in root exudates and in root tissue. With cabbage and potato, P deficiency induced exudation of citrate and succinate, respectively. Citrate‐exudation rate of P‐deficient cabbage plants was correlated with accumulation of citrate in root tissue. In contrast, high succinate‐exudation rates in potato were not correlated with an increased concentration in root tissue. For carrot, no change was observed in the exudation of any of the organic anions in response to P deficiency. The results also showed that succinate‐ and citrate‐exudation rates of cabbage roots increased with increased plant age. There was also a significant increase in exudation rates of organic anions of cabbage roots during the light period of the day. It was concluded that cabbage had the ability to exude large amounts of citrate in response to P deficiency by which it can additionally enhance its P‐uptake efficiency, whereas carrot and potato showed little evidence of possessing such a mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.