Abstract

The volatile constituents of the marine sponge Ircinia felix were obtained by dynamic headspace extraction and analyzed by HRGC, HRGC-MS and HRGC-Odor at sniffing port. Fifty-nine volatiles were identified for the first time in the odor of this sponge. Hydrocarbons (32.9%), alcohols (17.8%) and carbonyl compounds (16.0%) predominated in the sponge volatile profile, followed by esters (11.6%), halogen compounds (8.6%), ethers (7.7%), nitrogen and/or sulfur compounds (4.6%) and carboxylic acids (0.8%). Among the identified volatiles, thiobismethane (commonly known as dimethylsulfide), methyl isocyanide and methyl isothiocyanate were found to be responsible for the nauseating and toxic smell emitted by the sponge and for the antimicrobial activity detected in the volatile extract. Exudation experiments in aquarium and in situ conditions revealed that thiobismethane, methyl isocyanide and methyl isothiocyanate are continuously released by the sponge. Upon injury, the concentration of these volatiles increased strongly. Hence, these substances form a chemical protective barrier which may help these sponges avoid fouling, compete for space, prevent infection in the short term, and/or signal generalist predators regarding the existence of other toxic substances in the internal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.